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Pretransitional behaviour in nematogenic mixtures 

A molecular field theory? 

by G. S. ATTARD 
Edward Davies Chemical Laboratories, University College of Wales, 

Aberystwyth SY23 lNE, Wales 

and G. R. LUCKHURST 
Department of Chemistry, The University, Southampton SO9 5NH, England 

(Received 24 November 1986; accepted 3 March 1987) 

The isotropic phase of nematogenic liquid crystals exhibits strong pretran- 
sitional behaviour which diverges rapidly as the transition to the nematic phase is 
approached. Similarly nematogenic mixtures also show pronounced pretran- 
sitional effects although these can be dramatically reversed on the formation of the 
biphasic regime when isotropic and nematic phases coexist. Here we develop a 
theory for such effects using approximations taken from previous molecular field 
theories of nematogenic mixtures. In particular we consider the composition 
dependence of the divergence temperature for binary nematogenic mixtures and its 
relation to those of the pure components. A variety of mixtures with particles of 
different shape are treated, namely rods and spheres, laths and spheres, rods and 
rods, as well as rods and laths. We also predict the temperature dependence of the 
field-induced order parameters, often used to monitor pretransitional behaviour, 
for certain mixtures in both the homogeneous isotropic phase and the subsequent 
biphasic regime. The predictions of the theory are found to be in good accord 
with those investigations of pretransitional behaviour which are available for 
nematogenic mixtures. 

1. Introduction 
The nematic-isotropic transition is associated with strong pretransitional effects 

which are particularly manifest in the isotropic phase as the transition to the nematic 
is approached [l]. Thus in the isotropic phase the extent of the angular correlations, 
characteristic of the nematic phase, grows rapidly with decreasing temperature. The 
range of the angular correlations can be monitored by a variety of experiments which 
includes the Cotton-Mouton effect. In this, the orientational order induced in the 
isotropic phase by an applied magnetic field is measured by the field-induced birefrin- 
gence, An( = nil - nl). The Cotton-Mouton constant An/B2, where B is the magnetic 
flux density, is proportional to the second-rank orientational order parameter; this is 
found to diverge in the vicinity of the nematic-isotropic transition. To a reasonable 
approximation the inverse of the Cotton-Mouton constant is observed to vary 
linearly with-temperature and to vanish at a temperature T*, slightly below TNI. 

Comparable pretransitional behaviour has been found for nematogenic mixtures 
[2] although for such systems there is an additional factor which must be taken into 

YPresented at the Annual Meeting of the British Liquid Crystal Society, University of 
Manchester, 24-26 March 1986. 
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442 G. S. Attard and G. R. Luckhurst 

account. Because the nematic-isotropic transition is first order the addition of a 
solute creates a biphasic regime in which both isotropic and nematic phases coexist 
[3]. It is of some interest therefore to explore how the pretransitional behaviour 
changes when the coexisting nematic phase is formed. Such an investigation is 
extremely difficult using conventional techniques for the study of pretransitional 
effects because the response from the isotropic phase is not readily separated from 
that of the coexisting nematic. This difficulty can be overcome by using deuterium 
N.M.R. spectroscopy to determine the magnetic field-induced order because the 
spectra from both the isotropic and nematic phases are completely separate [4]. These 
studies have revealed that as soon as the biphasic regime is reached the divergence of 
the field-induced order is quenched. Indeed careful inspection of the results reveals 
that the order apparently decreases with decreasing temperature when the two phases 
coexist. To understand this intriguing behaviour we have developed a theory for 
pretransitional effects in nematogenic mixtures; this is based on approximations used 
in previous molecular field theories of liquid-crystalline mixtures. The theory is also 
of value in quite a different context. It is virtually impossible to determine much of 
the phase diagram exhibited by a mixture of a nematogen with a solute whose 
molecules deviate only slightly from spherical symmetry. This situation obtains 
because the nematic-isotropic transition is depressed below the freezing point for 
even small solute concentrations [ 3 ] .  However, as Rosenblatt [5 ]  has shown, it is 
possible to measure the divergence temperature T* for the mixture over a much wider 
concentration range. Of course, T* cannot be equated with the transition tem- 
perature, even for a pure nematogen and for a mixture the difference is expected to 
be even greater, as we shall see. It is important for the interpretation of such 
experiments to understand those factors which influence the pretransitional diver- 
gence temperature of a nematogenic mixture. The theory which we present here 
provides this understanding as well as predicting how T* varies with the anisotropic 
molecular interactions and the composition. 

The o u t h e  of the paper is as follows. The general theory for the pretransitional 
behaviour of a binary mixture composed of uniaxial and biaxial particles is developed 
in $3.  The predictions of the theory are then specialized to particular systems, such as 
mixtures of rods and spheres as well as that of two rod-like species. In $4 the 
field-induced order is determined within the biphasic regime both for the uniaxial 
solvent as well as a biaxial solute. Where possible we shall make contact with 
experiment. However experimental studies of the pretransitional behaviour of 
nematogenic mixtures are rare, indeed we hope that the theoretical predictions given 
here will stimulate further investigations. We begin, in the following section, not with 
mixtures but with pure nematogens composed of uniaxial and biaxial molecules. This 
allows us to establish the formalism, which we shall need for mixtures, with systems 
that, of necessity, are somwhat simpler. 

2. Pure nematogens 
2. I .  Uniaxial molecules 

As we have seen the magnetic field in a Cotton-Mouton or an N.M.R. experiment 
can induce orientational order in an isotropic phase, provided the molecular magnetic 
susceptibility is anisotropic. This order is characterized by a set of orientational order 
parameters but of these only the second-rank quantities are determined in these two 
experiments. For a pure nematogen composed of cylindrically symmetric particles the 
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Pretransitional behaviour in nematogenic mixtures 443 

second-rank order parameter, P, ,  is defined by the ensemble average of the second 
Legendre polynomial, P,(cos p), where fi is the angle between the magnetic field and 
the molecular symmetry axis. This average can be written in terms of the singlet 
orientational distribution function, f(B), as 

The distribution function can be taken to define the potential of mean torque, U(p),  
responsible for the orientational order, via 

where the normalization is provided by 

Z = Jon exp { - U(P)/kT} sinBdB. (3) 

The potential of mean torque contains two contributions, one resulting from the 
anisotropy in the magnetic susceptibility, Ax( _= x,, - xl), which couples to the mag- 
netic flux density 

Umag(B) = -(1/3)Ax B2P2(cosB), (4) 

and the other comes from the anisotropic molecular interactions. The form of this 
second contribution is not known but it may be expanded, quite generally, as 

although, as we shall discover, only one of the terms in this summation is required. 
The orientational order induced in the isotropic phase is small, P2 is typically 

about even for the largest fields available for pretransitional studies, and so 
U(B)/kT in the Boltzmann factor must also be small. In consequence the expansion 
of the exponential functions may be truncated after the first non-trivial term. This 
gives the orientational distribution function, in the limit of low order, as 

The second-rank field-induced order parameter is then simply 

P2 = (1/5kT)(AxB2f3 + u2), (7) 

because the other terms in the molecular contribution to the potential of mean torque 
vanish as a consequence of the orthogonality of the Legendre polynomials. The 
expansion coefficient, u,, is dependent on the orientational order and according to the 
Maier-Saupe theory [6] 

u, = ii2ii2. (8) 

With this result, obtained through the molecular field approximation, the field- 
induced second-rank order parameter is given by 

P2 = (AxB2/l5k)/(T - T*), (9) 

T* = ii2/5k; (10) 

where the divergence temperature is predicted to be 
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444 G. S .  Attard and G. R. Luckhurst 

here T* may also be identified as the temperature at which the isotropic phase would 
have undergone a second-order transition to the nematic if the first-order nematic- 
isotropic transition had not intervened. The nematic-isotropic transition temperature 
is predicted by the Maier-Saupe theory [6] to be 

TNI = ii2/4.541k, ( 1  1) 

and so the ratio, T*/TNI, is found to be 0.908. This is in reasonable agreement with 
a typical experimental value of about 0.998 [l] although for our purposes the com- 
parison may be misleading. This situation obtains because the prediction of the 
nematic-isotropic transition temperature requires the molecular field approximation 
to evaluate the orientational entropy whereas this is not needed to determine the 
divergence temperature, In consequence the two temperatures may well be predicted 
with differing accuracy, since our primary concern is with T* alone we need to 
estimate the accuracy with which the divergence temperature can be predicted 
independently of how well TN, can be calculated. It is possible to obtain such an 
independent test for T* by using the results of two computer simulation studies of the 
Lebwohl-Lasher model nematogen [7]. Both investigations are consistent with a 
scaled divergence temperature, kT*/&, of 1.12 where E determines the strength of the 
anisotropic pair potential. For this model nematogen the Maier-Saupe parameter 6, 
is just 68 because the particles are confined to the sites of a simple cubic lattice whose 
coordination number is 6. The scaled divergence temperature is therefore predicted to 
be 1.200 which is in good agreement with the simulation experiments given the 
relatively simple form of the theory. In contrast, the scaled nematic-isotropic tran- 
sition temperature is found from the simulations to be 1.127 whereas the Maier- 
Saupe theory predicts the considerably higher value of 1.321. The predictions for both 
temperatures can be improved by using cluster theories which take better account of 
the short range angular correlations. Thus for a two-site cluster Ypma and Vertogen, 
using the Bethe method, have calculated kT*/& to be 1.098 for a six-coordinate lattice 
[8] .  The agreement with the observed value is clearly enhanced; however the simpler 
approach offered by the single-site cluster or molecular field approximation is suf- 
ficiently accurate for our treatment of binary mixtures. 

2.2. Biaxial molecules 
The molecules which constitute real nematogens rarely conform to the cylindrical 

symmetry assumed in the Maier-Saupe theory. Provided the molecular flexibility is 
ignored the molecules may be taken to be biaxial and so their orientational order must 
be characterized by a set of ordering tensors [9]. The second-rank member of this set, 
related to the pretransitional experiments, is the ensemble average of the second 
modified spherical harmonic, Czm(w), where o denotes the spherical polar angles 
made by the magnetic field with a molecular frame. If this is the principal axis system 
for the ordering tensor then the C,+l vanish and is equal to f2-,. The non-zero 
components of this spherical tensor are related to the principal elements of the Saupe 
ordering matrix, which is its Cartesian equivalent, by 

and 
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Pretransitional behaviour in nematogenic mixtures 445 

where xyz is the principal axis system [9]. We see therefore that to characterize the 
field-induced orientational order we require an experiment which yields at least two 
independent pieces of information. This is not possible for conventional techniques, 
such as the Cotton-Mouton effect, but can be achieved with an N.M.R. experiment 
[lo]. 

The calculation of the two principal order parameters proceeds as for a system of 
uniaxial particles but now the singlet orientational distribution function, f(o), and 
the potential of mean torque, U(o), depend on the two spherical polar angles. The 
magnetic contribution to the potential of mean torque can be written, in irreducible 
spherical tensor notation, as 

where the magnetic susceptibility tensor is defined to include the magnetic field term 
(2/3)'"B2 when the field is parallel to the laboratory z axis. The molecular field 
contribution to U(w) could be expanded in a basis of modified spherical harmonics 
but only the second-rank term of this expansion is needed to evaluate the second-rank 
ordering tensors in the low order limit, as we have seen for uniaxial molecules. 
According to the molecular field theory for nematogens of biaxial molecules proposed 
by Luckhurst et al. [6,11], the second-rank molecular field contribution to the 
potential of mean torque is 

The orientational distribution function, in the low order limit, is then 

and the field-induced order parameters are predicted to be 

C2, = (1/5kT)(z20 + 1 i i20kCTp) 
k 

and 

The summations in these equations can be restricted to k = 0, k2, by using the 
principal molecular axis system which we take to be the same as that for the magnetic 
susceptibility tensor. This is consistent with D2* or C2, molecular symmetry which then 
constrains the expansion coefficients according to [6,11] 

- 
u2-k-k. (17) - - 

U2kk' = f i2k-k '  - %-kk - - 

With these restrictions the two field-induced order parameters are given by the 
solutions to the simultaneous equations 

I (5kT - ii2,33)C20 - 2ii202C22 = x20 

and 

- ii220C20 + (5kT - 2ii222)c22 = x ~ ~ .  
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446 G. S. Attard and G. R. Luckhurst 

In determinental form the order parameters are 

(5kT - i i 2 0 0 )  1;’’ (5kT -2ii202 - 2ii222) Ill - c220 (5kT - 2 f i 2 2 2 )  

c20 = 

and \ (19) 

For both order parameters the numerators are non-zero and have a relatively weak 
temperature dependence in the vicinity of the nematic-isotropic transition; in conse- 
quence the divergence of the order parameters is determined by the temperature 
variation of the denominator. This is common to both order parameters and so, as 
we expect, the two order parameters are predicted to diverge at the same temperature 
which is obtained by setting the determinant in the denominator equal to zero; this 
gives 

(5kT* - 52~)(5kT* - 2 i i 2 2 2 )  - 2 i i 2 0 2 4 2 0  = 0 .  (20) 
We can simplify this result by noting that ii,,, is equal to ii220 and by invoking the 
geometric mean approximation to relate the interaction parameters [6,11] 

u202 = i i 2 0 0 f i 2 2 2 r  

which is valid when the anisotropic pair potential is determined by individual 
molecular properties, as for dispersion and quadrupolar interactions. With this 
approximation the divergence temperature for a nematogen of biaxial particles is 
predicted to be 

(21)  -2 

T* = (2&~/5k) ( l  + 2 i i222 / i i2W) .  (22)  

The extent of the molecular biaxiality is defined via the ratio ii202/52W which is denoted 
by I ,  and so within the geometric mean approximation ii222/ii200 is simply ,I2 [l 11. In 
the limit of molecular uniaxiality I vanishes and the divergence temperature becomes 
ii200/5k which we write as T:. Accordingly the divergence temperature T: for biaxial 
particles is 

T: = T:(l + 212). (23)  

The increase in T: with the molecular biaxiality is shown in the table which also lists 
the nematic-isotropic transition temperature. We find that their ratio T2/TN,  tends 
to unity as the molecular biaxiality increases which is in accord with the reduction in 

The dependence of the divergence temperature, kTz/i&, the nematic-isotropic transition 
temperature, kTN1/ii2M). their ratio and the entropy of transition, ASIR [Ill on the 
molecular biaxiality, 1. 

1 kT,*lZ2M) kTNl / i i200  Tb*/TNI AS/ R 

0 0.2000 0.2203 0.9079 0.417 
0.1 0.2040 0.2220 0.91 89 0.384 
0.2 0.2 160 0.2280 0.9474 0.275 
0.3 0.2360 0.2404 0.98 17 0.1 12 
1 IJ6 0.2666 0.2666 I .oooo 0 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Pretransitional behaviour in nematogenic mixtures 447 

the entropy of transition. The maximum biaxiality for a molecule occurs when A is 
1/,/6, for this the phase transition is predicted to be second order and the nematic 
phase is biaxial [12]; it is here that TZ and T,, are found to be equal. 

The precise form for the temperature dependence of the field-induced order 
parameters can be obtained from numerical solutions to equations (19). However to 
perform these calculations we should need to assume particular values for the ratio 
x2'/x2' as well as for 1. Since our major objective is to develop a molecular field theory 
for binary mixtures we shall not report such calculations here. Instead we now 
proceed, in the following section, to present a theory of pretransitional behaviour in 
nematogenic mixtures. 

3. Binary mixtures 
We shall develop the molecular field theory for a variety of binary mixtures. For 

the most general case which we shall consider one component, A ,  is taken to have 
cylindrically symmetric molecules and so may be thought of as the nematogenic 
solvent while the other component, B, is assumed to be formed from biaxial molecules 
and so could be considered as the solute. To determine the field-induced order 
parameters we require the potential of mean torque experienced by each. As we have 
seen, there are two contributions to these, one from the interaction of the magnetic 
flux density with the anisotropic magnetic susceptibility and the other from the 
molecular field created by the anisotropic molecular interactions. 

The magnetic contributions are equivalent to those which we have encountered for 
the pure nematogens although we rewrite them, in a common notation, as 

for the uniaxial component and 

v&g(oB> = - [ x ~ o c 2 0 ( o B )  + x i 2 { c 2 2 ( w B )  + c 2 - 2 ( w B ) } l  (25) 

for the biaxial species. Here wA and wB denote the spherical polar angles made by the 
magnetic field with the molecular frames of A and B, respectively. These frames are 
chosen to reflect the molecular symmetry assumed for the two components. The 
molecular field contributions to the potentials of mean torque are taken from the 
theory of nematogenic mixtures developed by Humphries et al. [13] and later extended 
by Humphries and Luckhurst [14].  For the uniaxial component 

here x is the mole fraction of B. This simple dependence of the potential of mean 
torque on the composition results from the random mixing approximation [ 131 
although if the molecular volumes of A and B were different the mole fraction would 
need to be replaced by a volume fraction [15]. The single, second-rank order par- 
ameter for component A is written as Cia instead of p: to conform with the notation 
for the elements of the ordering tensor, Cg and C;, for the biaxial component B. The 
coefficients ii,, determine the strength of the molecular field contribution to the 
potential of mean torque; the first subscript is simply the rank of the interaction. Of 
the other two subscripts in, for example, ii;!,, the first is associated with component 
A and the other with component B; since component A is cylindrically symmetric, m 
is therefore confined to the value zero while n can take values 0 and f 2. The molecular 
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448 G. S. Attard and G. R. Luckhurst 

field experienced by A and given in equation (26) results from three interactions: the first 
term involving ii!d comes from the A-A interactions and so depends on the orien- 
tational order parameter for A as well as on its mole fraction; the second term 
involving i i f ;  is a mixed, A-B, interaction associated with the major axes of both A 
and B and so depends on the major order parameter c,”,, for B together with its mole 
fraction; and the final term, in iiii, is another mixed interaction but now associated 
with the major axis of A and the minor axes of B; it necessarily involves the biaxial 
order parameter, c,”,, for B and its mole fraction. The potential of mean torque for 
component B has a similar structure to that for A although there is an additional term, 
in i i f i ,  which results from the 8 - B  interaction associated with the minor axes; the 
potential is 

~ ~ ~ , ( w B )  = - { X C f & c &  + 2xfif&cg + ( 1  - x)u200c2O}c2O(~B) - A B  - A  

- (xiif4 c2”, + 2xii;:c; + ( 1  - x>ii:,”, C&} 
x {C22(%) + C2-2(0,)}. (27) 

In writing these expressions for the potential of mean torque we have used the 
relationships between the interaction coefficients contained in equation ( 1  7 )  based on 
the assumed molecular symmetry, together with the identity 

for the mixed interactions. In general the potential of mean torque may also contain 
terms of higher rank but as we have seen they do not contribute to the second-rank 
field-induced order parameters. 

These order parameters are determined from the total potential of mean torque 
in exactly the same way as for the pure nematogens. Indeed the potentials have 
the same dependence on the molecular orientations and so we find, for component 
A ,  

-AB ‘ B  -AB C B  cfo = ( 1 / 5 k T ) { ~ f P  + ( 1  - ~)ii!dC$ + X U ~ ~ ~ C Z O  + 2 ~ ~ 2 0 2  2 2 ) -  (29) 

However unlike the result in equation (7)  the field-induced order parameter for A now 
depends on the ordering tensor for B.  The components c&, take the same form as for 
the nematogen composed of biaxial particles (cf. equation (18)) and so for the major 
order parameter we have 

C2”, = (1/5kT){zi0 + xiif;C2”, + 2~iif;C,”, + ( 1  - x)u~,C~O} -AB - A  (30) 

and for the biaxial order parameter 

C$ = (1/5kT){xi2 + xiifge,”, + 2~iif;C,”,  + ( 1  - ~ ) i i f , ” , C ~ ~ } .  ( 3 1 )  

There are then three simultaneous equations for the three field-induced order par- 
ameters and we can rewrite these in matrix form as 
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5kT - (1 - x)& - x i i g  
C& = A-’ -(1 - x)ii;& 5kT - xiif; xio 

-(I - x>ii;; -xiif-$ x i 2  

449 

, 

The solutions to this equation can be expressed in determinental form as 

5kT - (1 - x)ii; ,  - xii;; - 2xii;; 

A =  - ( 1  - x)ii;J 5kT - xii?; -2xii;; 

- (1  - X)ug - xiif$ 5kT - 2xiif; 

and 

. (36) 

(35) 

3.1. Infinite dilution 
In the limit that x tends zero or unity we recover from equation (36) the divergence 

temperatures for the pure nematogens formed from uniaxial and biaxial particles, 
respectively. In addition we can also determine the temperature dependence of the 
solute order parameter in this infinite dilution limit. Of particular interest is a uniaxial 
solvent with a biaxial solute since the pretransitional behaviour of such systems have 
been studied by N.M.R. spectroscopy [4, lo]. For this mixture we take the limit as x 
goes to zero and from equations (33) to (36) we obtain the order parameter for the 
solvent as 

= xio/5k(T - T:), (37) 
where is the divergence temperature for pure A, namely iig/5k (cf. equation (10)). 
The components of the ordering tensor for the solute are of potentially greater 
importance and these are found to be 

C& = (1/5kT)(xg0 + ii;;C,Ao) 
(38) I and 

c& = (1/5kT)(xi2 + ii;”,”,C;6), 
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where the order parameter for the solvent is given by equation (37). We see that there 
are two contributions to each solute order parameter. The first is the direct alignment 
via the coupling of the magnetic flux density to the anisotropic magnetic susceptibility 
of the solute. The second results from the indirect alignment caused by a combination 
of the anisotropic solute-solvent interaction and the direct alignment of the solvent 
by the magnetic field. From the structure of the equations we can see that the 
molecular field plays an analogous role to the magnetic field, with ii&cio and iit&cto 
being equivalent to xio and xi2, respectively. The major difference between these 
strength parameters is that the molecular field is strongly temperature dependent via 
the solvent order parameter whereas the magnetic susceptibility is temperature inde- 
pendent. In consequence the direct contribution to the solute ordering tensor is 
expected to be negligible in comparison to the indirect mechanism except at tem- 
peratures far from the phase transition. We also note that the temperature dependence 
of the solvent order only contains information concerning the anisotropic interactions 
via the divergence temperature T;. In contrast the solute ordering tensor yields the 
solute-solvent interaction parameters, ~2;; and iif&, as well as the divergence tem- 
perature. Thus close to the nematic-isotropic transition the ratio c$/ci is essentially 
equal to fif&/iiii, a result which was suggested but not derived previously [lo]. 

3.2. Rods and spheres 
The simplest binary nematogenic mixture is formed by the addition of a spheri- 

cally symmetric solute to a uniaxial solvent. Despite its apparent simplicity the phase 
diagram for the mixture is predicted to be somewhat complex exhibiting as it does a 
re-entrant biphasic regime [I61 as well as an extensive normal biphasic range [17]. In 
contrast the composition dependence of the divergence temperature obtained from 
the isotropic phase prior to the formation of the coexisting nematic and isotropic 
phases is predicted to be quite straightforward, as we shall now see. For spherical 
solutes the interaction parameters ii,”d5: and iiz”,”, vanish and so the determinant con- 
trolling the divergence of c:o (cf. equation (36)) reduces to 

O I  
(5kT - (1  - x)Z2fd 0 

0 5kT 0 I .  (39) 

0 0 5kTI 

The divergence temperature T$ for the mixture is then just 

TG = (1 - x)T:, 

and so the addition of the spherical solute simply scales the divergence temperature 
for the solvent T,* with its mole fraction. It is possible to test this prediction by using 
the results obtained by Rosenblatt [5] for a mixture of 4-n-pentyl-4‘-cyanobiphenyl 
and carbon tetrachloride. However the molecular volumes of these components are 
not the same and so the mole fraction in equation (40) must be replaced by the volume 
fraction of the solute. With this change the predicted composition dependence of 
T$ is found to be in good agreement with experiment. Indeed this composition 
dependence of the divergence temperature had been postulated but not derived by 
Rosenblatt [5 ] .  

In the absence of phase separation the nematic-isotropic transition temperature 
for the mixture is also predicted to be linear in the mole fraction of nematogenic 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Pretransitional behaviour in nematogenic mixtures 45 1 

5kT 0 0 

A = 0 5kT - xiif& -2xii,B,B, 

0 - xii?; 5kT - 2 ~ ~ 2 ; ;  

solvent [13] 

. (43) 

TZ = (1 - X ) T ~ , .  

The difference (T,", - 7'4) should therefore be linear in the solvent mole fraction also 

(TZ - TG) = (1 - X ) ( T ~ ,  - TZ) (42) 

and should tend to zero as the mole fraction of solute is increased. This intriguing 
behaviour has not been observed for thermotropic systems where, in any event, the 
biphasic regime is expected to be extensive. However this regime is considerably 
smaller for a micellar liquid crystal formed from caesium perfluorooctanoate and 
water; for this system the difference (TG - Thfl) has been determined and is found to 
decrease significantly with increasing water concentration [ 181. Provided we make the 
major assumption that the water plays the role of the spherical solute and the micelles 
that of the uniaxial solvent then these measurements support, at least qualitatively, 
the theoretical predictions. 

3.4. Rods and rods 
We now turn to the pretransitional behaviour for a mixture of two nematogens 

each composed of cylindrically symmetric particles. For such a system the biaxial 
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5kT - (1  - x)iiti - x i i g  0 

A = - ( 1  - x)ii;; 5kT - ~ii!; 0 

0 0 5kT 
. (45) 

Figure 1. The composition dependence of the divergence temperature, T& for a binary 
mixture of cylindrically symmetric particles with T$/C equal to 0.8 calculated from 
equation (46) when the mixed interaction parameter, $4, (a) obeys the geometric mean 
combining rule, (b)  exhibits a positive deviation from it (6 = 1.1) and (c) has a negative 
deviation (6 = 0.9). 
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mean clearly result in a non-linear dependence of the divergence temperature for the 
mixture on its composition. Positive deviations, corresponding to 6 > 1, produce an 
increase in the value of Th: while negative deviations (6 < 1) lower the divergence 
temperature; the deviations from the linear dependence of TS appear to be essentially 
symmetric in the parameter 6 .  Similar deviations from the linear dependence of the 
nematic-isotropic transition temperature on composition are also observed when 
there are deviations of the mixed interaction parameter from the Berthelot combining 
rule [13]. 

Although we have presented the theory for mixtures of rods and rods, the 
equations are equally valid for nematogenic mixtures composed of rod-like and 
disc-like particles. The only difference is that the mixed interaction, i&, is negative 
for rods and discs because these particles tend to align at right angles to each other, 
whereas for rod-like particles it is positive, as are the pure interactions. The phase 
diagram for such a mixture is predicted [I91 to be intricate because the system 
separates into two uniaxial nematic phases rather than form a single biaxial nematic 
phase [20] when the mixed interaction obeys the geometric mean combining rule. If 
this restriction is relaxed then the phase diagram becomes more complex and a biaxial 
nematic phase can be stabilized [21]. In contrast the divergence temperature obtained 
from the isotropic phase prior to the biphasic region is predicted to have a linear 
dependence on the composition, in the geometric mean limit (cf. equation (47)). 
Indeed since the mixed interaction parameter enters equation (46) for TG as the square 
then the results obtained when the geometric mean rule no longer holds, and shown 
in figure 1 for rods and rods, should still be valid for rods and discs. We have been 
unable to locate any measurements of pretransitional behaviour for mixtures of rods 
and discs, or indeed for rods and rods. However Rosenblatt [5] has studied the binary 
mixture of 4-n-pentyl-4-cyanobiphenyl and tetraethyl tin over a relatively wide 
concentration range. Deuterium N.M.R. measurements of comparable mixtures 
suggest that within the nematic phase the flexible tetraethyl tin tends to adopt a planar 
conformation [22]. If this is indeed the case then TS should be given by equation (47) 
but with the mole fraction replaced by the volume fraction because the two com- 
ponents do not have the same molecular volume. Tetraethyl tin is not mesogenic and 
so its divergence temperature T,* is not known; if this is taken therefore as an 
adjustable parameter then, to a reasonable approximation, it proves possible to fit 
Rosenblatt's data [22]. 

3.5. Rods and laths 
For the sake of completeness we now consider the divergence temperature for a 

binary mixture of uniaxial and biaxial particles, corresponding to the most general 
case dealt with by the theory. This temperature is obtained by setting the determinant 
in equation (36) equal to zero; however as the resultant cubic equation in Th: contains 
six interaction coefficients we have first sought to reduce this number. Thus the mixed 
interaction coefficients have been related to those for the pure components via the 
geometric mean approximation 

a specialized version of this approximation had been introduced earlier for inter- 
actions between different rod-like particles. The pure uniaxial-biaxial interaction 
coefficient, ii2BgB2, is approximated in a similar way (cf. equation (21)). The number of 
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unknown interaction parameters is then reduced to just three, $4, iifi and iifg, for 
the pure components and with these the divergence temperature is found to be linearly 
dependent on the composition of the binary mixture 

TG = (1 - x)T: + xT;; (50) 

here the divergence temperatures for the pure components are given by equations (10) 
and (23). We haye also investigated the effect of deviations from the geometric mean 
approximation for the mixed interactions on the composition dependence of T,*; as 
for mixtures of rods and rods the linear dependence on x is lost and’for positive 
deviations TS is increased while for negative deviations it is reduced. 

4. The temperature dependence of the field-induced order parameters 
In the previous section we have been concerned, predominantly, with the diver- 

gence temperatures for various nematogenic binary mixtures. These temperatures 
could then be compared with those determined from studies of the isotropic phase 
prior to the formation of the biphasic regime. However an N.M.R. investigation of 
the field-induced order within the isotropic phase of the biphasic regime has revealed 
a totally different pretransitional behaviour to that in the preceding homogeneous 
isotropic phase [4]. To undertstand this marked change in behaviour we now develop 
expressions for the field-induced order parameters in both regimes. To do this we shall 
consider two particular mixtures; firstly rods and spheres which serves to illustrate the 
procedure and then rods and laths which is analogous to that studied experimentally. 

4.1. Rods and spheres 
The field-induced order parameter, C,”,, for the nematogenic solvent is obtained 

from equations (33) and (36) as 

= 1io/{5kT - (1 - x)ii;d}, (51) 

by setting x2go0, &?, iiZ”0fl and iiz”,”, equal to zero. It is convenient to work with a scaled 
order parameter and so we rewrite equation (51) as 

(5kC&/Xio)-I = T - (1 - x)TT. (52)  

The inverse, scaled order parameter is predicted therefore to be linear in temperature, 
with unit slope and intercept (1 - x)T,*, prior to the formation of the coexisting iso- 
tropic and nematic phases. At this temperature, T,, the composition of the isotropic 
phase starts to change, becoming richer in the spherical component B, and so there 
is an additional contribution to the temperature dependence of e,A,. To predict this 
new contribution we take the solute concentration to be sufficiently small that the 
mixture is within the Henry’s Law regime [3]. In other words the phase boundaries 
shown in figure 2 are linear in the mole fraction of the solute, x. The composition, xI , 
of the coexisting isotropic phase is related to the slope, 87, of the upper phase 
boundary by 

XI = (T,(XI) - G1)lPlm; (53) 
here the superscript co indicates the Henry’s Law regime, formally valid in the infinite 
dilution limit [3]. The nematic-isotropic transition temperature of the pure nematogenic 
solvent is denoted by TN1, and TI (xI) is the upper transition temperature for a mixture 
with a solute mole fraction xI (cf. figure 2) .  In principle the slope of the phase 
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0 * 
X 

Figure 2. The phase diagram for a binary nematogenic mixture within the Henry's Law 
regime. The solute, B, is taken to be less anisotropic than the nematogenic solvent, A .  

boundaries can be predicted by the molecular field theories of nematogenic mixtures 
[15,16]; however we do not wish, at this stage, to combine our theory of the pre- 
transitional behaviour of mixtures with that for the transitional properties which 
necessarily contains additional approximations. We shall therefore treat the slope, 
p;", as a parameter to be entered into the theory. None the less we note that for a 
mixture of rods and spheres the slope is predicted to equal - Til in the absence of 
phase separation [ 131; when phase separation is allowed Ip? I is found to be reduced 
to 0.817T,", provided the solvent and solute have the same molecular volumes [15,16]. 

To obtain C;b at a temperature T within the biphasic regime we need the com- 
position of the coexisting isotropic phase x, ;  this is given by equation (53) with TI 
replaced by T (cf. figure 2). The scaled field-induced order parameter of the solvent 
within this region is, therefore, given by 

(5kC;0/X;0)-' = ((1 + T,*/BI")T - (1 + T,",/a;")T,*}. (54) 

We see then that within the biphasic regime the inverse of the scaled order parameter 
is also predicted to be linear in the temperature; however the slope has changed from 
1 to (1 + T,*/p?) and the intercept is now (1 + T,"l/p?)(l + T,*/B?)-I T,* instead 
of (1 - x)T,*. These changes are predicted to be particularly dramatic for as we have 
seen p;" is expected to be negative and less than Til; in consequence the slope should 
be negative and small. Clearly, if the sign of the slope for the inverse plot is not to 
change on entering the biphasic regime then j?, the slope of the phase boundary, has 
to be greater in magnitude than Ti, .  In addition because T,* is approximately equal 
to T,", the intercept for the inverse order parameter plot should be about TAy, the 
divergence temperature for the pure nematogen, and not that for the mixture, 

We show in figure 3 the temperature dependence of (a) the scaled order parameter 
and (b) its inverse within the homogeneous isotropic phase and the biphasic regime; 
the parameters used in these model calculations were /?I" = -0.6T,", and 

= -4.8 Til which simply determines T," at  the lowest phase boundary, for a 

(1 - x)T,*. 
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1c 
5 k c ~ 0 / X ~  

L c 
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0 
0.8 1.0 1.2 

0.2 

0 
0.8 1.0 1.2 

T/Ti 
Figure 3. The dependence of (a) the scaled, field-induced order parameter, 5 k c t 0 / ~ f 0 ,  and 

(b) its inverse on the scaled temperature, T/T{, prior to and in the biphasic regime cal- 
culated from equations (52) and (54) respectively, with p? = -0.6 Ti, ,  p: = -4.8 TL, 
and x = 0.03. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Pretransitional behaviour in nematogenic mixtures 

10 
Scaled 
Order 
Pa ra me ter 

5 

0 - 

0.8 1 .o 1.2 
T/TNAf 

457 

Figure 4. The scaled temperature dependence of (a) the scaled, field-induced order parameter 
for the solvent, Skc&/xfp and the ordering tensor 5kc&/ f i ,  Skc;/f i  for the solute and 
(b) their inverses calculated from equations (33) to (36) and equation (53) using the 
parameters listed in the text. 
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solute mole fraction of 0-03. In figure 3(u)  we see that the divergence of cf0 is 
quenched at the upper phase boundary and decreases as the temperature is lowered 
within the biphasic regime. The linear plots for the inverse order parameter, given in 
figure 3 (b), reveal that the sign of the slope is changed at the phase boundary and is 
reduced in the biphasic regime. Similarly the intercept is found to increase to a value 
above that for the pure nematogen. The predicted variations of the field-induced 
solvent order parameter is reminiscent of that observed for p-xylene dissolved in the 
nematogen Phase 5 [4]. However for this mixture it was the field-induced order 
parameters for the biaxial solute which were measured, although as we saw in 53.1 
these are expected to parallel that of the rod-like solvent, at least in the limit of infinite 
dilution. None the less it is of importance to include the solute-solvent interactions 
in the calculations and this we do in the following section. 

4.2. Rods and laths 
The field-induced order parameters for the two components in this mixture of 

uniaxial and biaxial particles are not readily obtained in analytic form from equations 
( 3 3 )  to (36) .  This is especially difficult when the temperature dependence of the 
composition is allowed for within the biphasic regime from equation (53 ) .  We have, 
therefore, found numerical solutions to these equations using the geometric mean 
approximations and typical values for the remaining parameters 

x = 0.03, 
- B B  - A A  - -BB - B B  = 0.1 
~ 2 w / U 2 o o  - 0.2, u222 Iuzoo , 

x’B”/x’A” = 0-2, X’B’/X’B” = 0.1, 

/3? = -0.6T,A,, = -4.8 TNAl. 

The parameters are shown as scaled quantities because the results obtained as a func- 
tion of the sealed temperature, TIT:,, are also scaled quantities, namely SkC,”,/x;’, 
5 k C , B , / ~ i ~  and 5kC,B,/~y.  These results for the scaled order parameters are shown in 
figure 4(u); the divergence of all three within the homogeneous isotropic phase is 
clearly apparent as is the reversal of this trend when the biphasic regime is formed. 
The solute order parameters appear to parallel that for the solvent, as we had 
anticipated for this relatively low solute concentration. The plots of the inverse order 
parameters against the scaled temperature are given in figure 4 (b); they are linear and 
show the dramatic change in behaviour on entering the biphasic regime, thus the slopes 
are considerably reduced in magnitude and their signs are reversed. The linear plots for 
the three inverse order parameters have a common intercept and this is increased 
significantly within the biphasic regime. 

Finally we note that the predicted temperature dependence for the solute order 
parameters bears a striking resemblance to those determined for p-xylene dissolved in 
Phase 5 [4], especially when allowance is made for the much smaller biphasic regime 
of the real nematogenic mixture. 
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